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The Number of Partitions of the Integer N 
into M Nonzero Positive Integers 

By W. J. A. Colman 

Abstract. The function pm( n) is defined as the number of partitions of the integer n into 
exactly m nonzero positive integers where the order is irrelevant. 

A series in which the leading terms alternate in sign is given for pm( n) which yields good 
numerical estimates. 

1. Introduction. If Pm( n) is the number of partitions of the integer n into exactly m 
positive integers and if pm(n) is the number of partitions into at most m parts and 
p(m) is the usual partition function, then there are some simple known relationships 
between them. 

Pm(n) -Pm(n - m) Pmp- i(n -1), 

Pm(n) = pm(n + m), 

p(m) = pm(2m). 
Closed formulae for pm(n) are known for small m; see Gupta. In particular, we have 

P2(n) = [ ! I P3(n) [ !2!] 

[n3 + 3n2 + lt9n (- 1) 9n + 321 
p4(n) =! 4! 3! 

The formulae for m = 2 and m = 3 are well known and the formula for m 4 is 
equivalent to a formula given by A. De Morgan (Dickson [2, p. 115]). Thus pm(n) is 
not a polynomial, but it contains a completely algebraic part which is a polynomial 
in n of degree (m - 1). If we call these polynomials qm(n) (say), then they satisfy the 
relationship 

qm(n) - qm(n - m) qm (n 1). 

2. A Series Expansion for qm(n). By writing qm(n)= amlnm-l + am2n m-2 + 

am3 nm-3 + ... and substituting in the recurrence relationship above, we can equate 
powers of n to yield the relationship 

(r 1)m r I (r 2) m i 

bmr (r-! bklk 1 bk2b + + - bkr k 

_ bmtIMr- I 
+ + bmr- Im M (r - 0(r 1) 2 

where amr m!(m - r)!bmr so that, as am1 1 m!(m - 1)!, we have bm I= 1. 
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This formula can be used to successively determine the amr to give the leading 
coefficients of qm( n). We have 

4 58m3 75m2 2m 
m(m-3) a 9 + 9 9 

m2 4m ! (m -2) ! m3 42 - 2!m! (m-3)! 

This leads to the expansion 

qm() -+ n(- m m-2 
m!(m-1)! m!(m-2)!\ 4-1! 

4 _58m3 75m2 2m 
I + ~ 

1 9 9 9 n m-3 
m! (m-3)! | 42 . 2! 

1 t m63 31m + 29m4 65m ?2m2 
+ 

1 + 
1 

nm4 + 
m ! (m-4)! 43 . 3! m !(m -5)! 

M' - 14 2 
M7 + 66 

16 
m6 -107 2295 M' + 55 134 m4-_10 54 m3 + 4m 2 _16 m 

3 7 25 3 3 27 225 nm5 

k 44. 4! 

The polynomials bmr can be generated by means of a computer program where the 
summations are effected using the Bernoulli polynomials. This expansion although 
of some interest is of little use for calculating pm(n) unless n is very large compared 
with m. 

G. J. Rieger has given the over estimate 

pm(n) < ! ( )!(n 4 ) n form a 4, 

which exactly agrees with the first two terms of the expansion. This yields good 
estimates when n is large compared with m(m - 3)/4 but gives no idea of the 
magnitude of the error. To determine a series expansion which will yield better 
numerical approximations and give some idea of the magnitude of the error, we can 
proceed as follows. 

3. An Alternating Series Expansion. Assume there is an expansion of the form 

Fr(mf) (~+m(m - 3) m-whrFrm qm(n) r35m! (m-r)!(n 4 whreF (m) = 1 
r1,3,5in(i-4 1 

we have 

qm(n - m)- mi! (i ) n 
n + r 4 m 

and 

(n-l) = z Fr(m - ) +m(m -3) _mA-i 
(mi- )! (mi- r - 1)! 4 2J 

Write 
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and 

q~(n-m)=~ m!jm?)r)( m(m -3) rn _ 

- 

qm( ) z m! (m -r)! 4 2 2) 

Put X= n + m(m - 3)/4 - m/2 (say) and expanding both sides in powers of X 
and equating, we have 

FI(m)mr-i F3(m)mr3 Fr(m)mo 
+ + .*-+ -Fr m- 

r!2r-I (r-2)!2r-3 1!20 

where F,(m) = I and r = 3, 5, 7,... . 

F F(M)MrlI F3()r3 M2~ 
Fr(m) )-~F(m -1) = k (3(m)m + 2(m 

Hence the Fr(m) can be determined sequentially, and the above expansion is 
possible. Now Fr(m) is a polynomial in m of degree (3r - 3)/2 without constant 
term. 

Thus Fr(O) 0 O. Putting m = 0, we have immediately that Fr(-1) 0 O. Putting 
m = -1 yields Fr(-2)= l/r!2r . These values can be used as a check when 
explicitly calculating the Fr(m). We have 

F1(m) -F(m- 1) (F1(m)mrr + +) 

Fr(l)-Fr(o) = -(Fr( + ?2(l)) 

Adding we have as Fr(O) 0 O that 

-F (m 
r!2 

+ 
3!2 r = 3, 5,7,.. with F, (m) = . 

By assuming an expansion of the form 

Fr(m) = arlm(3r-3)/2 + ar2m(3r-5)/2 + a r3m(3r-7)/2 + 

it is easy but tedious to show that 

m =Y ( r- 1)/2 

r 6r- 12 (r- 1)/2(- 1)/2) ! 

((3r-3)/2 + 3(r - 1)(3r + 16)m(3r-5)/2 

+ 4(r 20 1)o (3969r3 + 42615r2 - 39276r - 127870)m(3r7)/2 + 49 X 20,000 

Thus the polynomials Fr(m) alternate in sign. We have 

F1(m)= 1, 

F3() = - |- 32 2 F3(M) -(m62-2 1 ) 
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6 + 372mS + 505m4 + 27Gm3 + 25m2 - 12m 

F,(m) 100 100 100 100 100 
64 22. 2 j 

These polynomials can again be determined sequentially. The computer printout is 
given below 

r= 5 

-0.12 
0.25 
2.7 1 6M 4 M 
5.05 F5(m) 64 22 2!(m + 3.72m5 + 5.05m4 + 2.7m3 
3.72 +0.25m2 - 0.12m) 
1 

r 7 

-0.293878 
0.18 

-242 -6l7() . . (i9m + 6.66m8 + 18.6533m7 + 26.8264m6 -2.565 7() 
66 . 2' 3! 

- 18.3964 
-26.8264 +A18.3964m5 + 2.565m4 - 2.47214m3 
-18.6533 -0.18m2 + 0.293878m) 

-6.66 
-1 

r=9 r=11 rl13 

-2.22171 - 36.7225 -1118 
0.630955 5.90694 115.03 

16.3947 258.189 7682.71 
-4.82027 -36.4973 -637.779 

-44.5329 -602.259 - 16846 
23.1309 68.4204 698.096 

157.976 806.053 - 19211.2 
196.713 -186.351 137.842 
126.587 -1638.34 -15196.3 
47.8683 -1839.7 784.916 
10.32 - 1104.07 19823.1 
1. -416.03 20845 

-100.809 11813.2 
- 14.7 4357.69 

-1 1099 
187.143 
19.8 
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r = 15 r = 17 r = 19 r = 21 

-56378.7 -0.43752E7 -0.49478E9 -0.781715El1 
4028.38 230048 0.199698E8 0.25002E10 

382554 0.294572E8 0.33141E10 0.521721E12 
-20984.3 -0.115394E7 -0.97816E8 -0.120565E11 

-812491 -0.613873E8 -0.682167E10 -0.106477E13 
14732.7 548128 0.328379E8 0.296624E10 

866493 0.631721E8 0.686827E10 0.105652E13 
30820.2 0.235611E7 0.229987E9 0.305372El1 

-583067 -0.397167E8 -0.416288E10 -0.625932E12 
-55699 -0.388232E7 -0.354982E9 -0.451736El1 
301160 0.174792E8 0.171547E10 0.249008E12 
21659.1 0.288588E7 0.257655E9 0.317883El1 

-272765 -0.626974E7 -0.525898E9 -0.718084El 1 
-276413 -0.10408E7 -0.118078E9 -0.141378El1 
-149698 0.418598E7 0.136369E9 0.159685El1 

-53845.3 0.418626E7 0.335923E8 0.447758E10 
-13719.5 0.218906E7 -0.705382E8 -0.307064E10 

-2504.71 768379 -0.711215E8 -0.997364E9 
-318.096 195323 -0.362286E8 0.128808E10 

-25.62 36850.2 -0.124395E8 0.13368E10 
-1 5128.87 -0.313772E7 0.668514E9 

506.447 -600883 0.225198E9 
32.16 -87931.4 0.562438E8 

1 -9680.46 0.108307E8 
-766.529 0.163087E7 
-39.42 191397 

-1 17134.1 
1114.23 

47.4 
1 

All the polynomials to r 21 are of constant sign for m > r. This series has G. J. 
Rieger's estimate as its first term and being an alternating series will clearly yield 
successively both over and under estimates for Pm(n). Some numerical examples: 

Magnitude of each 
term Partial sum 

(1) P20(200) = .874388 X 1011 .148195 X 1012 .148195 X 1012 Rieger estimate 
.746174 X 1011 .735774 X 1011 
.154646 X 1011 .890421 X 1011 
.170826 X 1010 .873338 X 1011 
.108904 X 109 .874427 X 1011 

.405826 X 107 .874387 X 1011 
85496.6 .874388 X 1011 
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The expansion in terms of the Fr(m) for pm((n) when truncated at r = 1,3,5, or 7 
gives upper and lower bounds for Pm(n) better than those given previously for n 
tending to infinity. 

(2) P20(500) - .112794 X 10" 
.127275 X 10" .127275 X 10l8 
.152099 X 10'7 .112065 X 10"8 
.748178 X 10'5 .112813 X 10" 
.196154 X 1014 .112793 X 10" 
.296801 X 1012 .112794 X 10's 
.262506 X 10'? .112794 X 10"8 

(3) P30(1000) .716051 X 1026 

.895919 X 1026 .895919 X 1026 

.198200 X 1026 .697718 X 1026 

.194009 X 1025 .717119 X 1026 

.110784 X 1024 .716011 X 1026 

.409716 X 1022 .716052 X 1026 

.103050 X 1021 .716051 X 1026 

.180151 X 1019 .716051 X 1026 

4. The Relationship Between N and M for Effective Calculation of pm(n). Thus the 
series gives excellent results when n is suitably large compared with m. In fact this 
will be achieved if the terms decrease in absolute magnitude. A condition for this 
can be estimated approximately as follows. We have, apart from sign, 

Fr(m) 
= 

6r- 12(r- 1)/2((r - 1)/2)! 

X m (m(r-3)/2 + 3(r - 1)(3r + 16) m(3r-5)/2 x ~~~~100 

+ (r -1) (3969r3 + 42615r2 + )m(3r-7)/2.) 49 X 20,000 

whereas 

1_________________ { 3r + 16 (3r-3)/2 

6r-l2(r- 1)/2((r - 1)/2)! ,m 50 1 
1 

6r 12(r )/2 ((r - 1)/2)! 

X (m(3r-3)/2 + 3(r - 1)(3r + 16) m(3rV5)/2 

+ (r 0 -) (3969r3 + 35721r2 + ... )m(3r-7)/2... 49 X 20,000(96r) 

Thus we need to show that the polynomial 

612(r)/2((r 1) 2)! (m? 3r + 16 (3r-3)/2 
m + 5 
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is a good approximation for Fr(m) for m ? kr (say), where k ? 1. We can proceed as 
follows. 

Consider the equation 

Fr(m) -Fr(m - 1) 

(1Fr2(m)m2 + Fr4(M)M4 + + F(M)Mr- form r. 
3! .22 5!.-24 r! .2r-' 

We will consider the function 

Gr(m) 6r-12(r~D/2((r- 1)72 3r + 16) (3 - 3)/2 

and substitute in both sides of the above equation. We have 

Gr(m) -Gr(m- 1) 

3 (-3(1 r1)/2 

6r-12(r- 1)/2((r 3)/2)! 

X ( ( + 3r + 16 (3r-5)/2 1 ( 3r- 5( 3r + 16 (3r-7)/2 

?+(3r-5)(3r -7) m 3r +16 - )(3r-9)/2) 
+3! ( 2 )( 2 ) m+ 50 -) ) 

where 0 < 0 < 1. 

The right-hand side becomes, for s ? 2, 

3 (-1 )( r- 1)/2 

6r-I2 (r- 1)/2((r-3)/2)! 

6 + 3r + 10 )(3r9)/ m2 6 3r 9) (m+ 3r + 4 )(3r- 15)/2 

+ +(- 1)+ e6( 3r - (9 3r-(6s-3)) 

(2s + 1)! 2 2~m2 
( +3r -(6s- 16) )(3 -(6 +))/. 2s 

\5~~0 ! 

where for all s (3r - (6s + 3))/2 is positive. Thus all the factors are positive, and the 
series alternates in sign. We require 

sth I > I (s + I)th I term for s > 2 (say), 

3r - (6s - 16) 3r6s3)2 
2s ..(2s + 3)(2s + 2) + 50 )(3r-(6s3))/2 

- (6s + 3) + 3r - (6s - 10) )(3r(6s+9))/2 

Adequate if 

(2s + 3)(2s + 2)(m + 3r( 0 ) ) > 3(3r - (6s + 3))m2. 
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On the l.h.s. give s its smallest value when s = 2 if 

42(m + 3r (6s 10) ) > 3(3r - (6s + 3))m2. 

If m > r then r.h.s < 9m3 whereas l.h.s. > 42m3. Clearly the first term is larger than 
the second for m : r. Thus the terms of the series alternate in sign and decrease in 
absolute magnitude for m > r. Thus the sum of the series is greater than the first two 
terms but less than the first three. We have that the r.h.s. series 

+ 3r ?10 3 m2 6 2 3r 9)(m + 3r + 4 )(3r 15)/ m4 
m+ 50 5! 2 

m+ 50 

We can write this as 

3r + 16 6 (3r-9)/2 3r + 16 3r + 16 2 

(m?3r0 5 0 50 50 

6 _2 3r_-_9 3r + 16 12 (3r-15)/2 ( 3r + 16 3r + 16 4 

5! 2 qm+ 50 -50 m+ 50 - 0 

which is 

3r + 16 (3r-5)/2 3r-(5 3r + 16 ) (3r-7)/2 

>tm+ ~50 4 }t 50 fomr 

We can expand the first three terms in the same way to show that the sum of the 
series 

3r + 16 (3r-5)/2 - ( 3r-5 3r + 16 (3r 7)/2 

<tm+ 50 } t 4 }t 50 

+ (9.79r2 - 44.03r + 50.00) ( m + 3+ ) 24 ~~~~~~~~50 

Thus we have that the r.h.s. 

3( l)( r- 1)/2 

6r- 2(r- )/2((r- 3)/2)! 

((in ? 3r + 16 )(3r-5)/2 ( 3r- 5 ) 3r 16 (3r-7)/2 

+O( 24 (9.79r2 -44.03r + 50.00)( 3r ) 16 

whereas the l.h.s. 

3( l )( r- 1)/2 

6r- 2(r- )/2((r- 3)/2)! 

(< ((m?3r 16)(3r-5)/2 3r-5 3r + 16 )3r47m 2 

+?( 20 (9r2-36r + 35)(m +) ))) 
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Now F,(m) is the function such that 

r.h.s 1 
l.h.s 

We have for Gr(m) that 

1-- 3r-5 9.79r2 - 44.03r + 50 

r.h.s _ 4(m + (3r + 16)/5o) 24(m + (3r + 16)/5O)2 J 
l.h.s 3r-5 + 9r2-36r + 35 ) 

4(m + (3r + 16)/50) 
+ 

24(m + (3r + 16)/50)2 

where 0 < O(A) < A. Let us write m = kr (say), where k - 1 and r > 3. It is easy to 
show that for r > 3 

( 9.79r2 - 44.03r + 50 9.79 

24(kr + (3r + 16)/50)2 24(k + .06)2 

9r2-36r + 35 9 
24(kr + (3r + 16)/50)2 24(k + .06)2 

Hence 

1- _3r-5 
4(kr + (3r + 16)/50) 

1- _3r-5 + 9 
4(kr + (3r + 16)/50) 24(k + .06)2 

1- 3r-5 + 9.79 

r.h.s. 4(kr + (3r + 16)/50) 24(k + .06)2 
l.h.s. 3r-5 

4(kr + (3r + 16)/50) 

1 + ( (4k + .24)r + 1.28 
24(k + .06)2 \ (4k-2.76)r + 6.28! 

r.h.s. 9.79 ((4k + .24)r + 1.28 
l.h.s. 24(k + .06)2 (4k - 2.76)r + 6.28 

Now 

(4k + .24)r + 1.28 _ 4k + .24 

r:'?3 (4k - 2.76)r + 6.28 4k - 2.76 

1 r.hs 9.79 /4k +.24 

19 4k+ .24 l.h.s 24(k + .06)2( 4k- 2.76) 

24(k + .06)2 4k -2.76 

Put k 2 (say), 

m 8779 r.h.s 
2o r177 .h< -1s 2 
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Put k = 4 (say). 

m r.h.s 
.For r'< .9728 < l < 1.0304. 

4 l.h.s 

Clearly as k -x o, r.h.s/l.h.s tends to unity, which of course is apparent from the 
expansion for Fr(m) on p. 215. It is thus clear that the function Gr(m) is a good 
approximation for Fr(m) in the sense defined above. That is, the ratio is close to 
unity. Thus we can say that for r < m/2, Gr(m) is a 'good' approximation for Fr(m). 
Thus, for r < m/2 at least, the functions Fr(m) must be of constant sign as the 
functions Gr(m) certainly are, and the series will be an alternating one. The leading 
polynomials listed to r = 21 are of ponstant sign for r < m that is with k = 1 a 
property which is most probably general but is not proved here. In any event, it is 
only the leading terms that we require, and r of the order m/2 is quite sufficient. 
Thus for r s m/2 we can approximate FJ(m) with Gr(m) such that if ar is the r th 
term of the series expansion for qj(r), where r = 1,2, 3,..., then 

ar+ 2r+ I {m - (2r - 1)}(m - 2r) 
ar F2r- I (n + m(m-3)/4) 

1 ( 6r+ 19 (m-2r) <1 
(n + m(m - 3)/4)2 

if n+ m(m4- 3)) (M -2r) (m+6r-1-19 )3/2 
(4 

> 
,52 

m 
( 50 ) 

Now the right-hand side for fixed m and positive r is monotonically decreasing. Thus 
the terms constantly decrease in absolute value if, putting r = 1, we have 

+ m(m-3)) (m-2)(l 1 3/2 n 
4 

> 
g m + 2J 

Clearly n > mi5/2/ V is adequate. For comparison the two estimates are 

m = 20 n > 112 n > 210 
m = 30 n > 354 n > 581 
m = 50 n > 1443 n > 2084 
m=100 n>9212 n>11,786 

The series can still be of value even when n is smaller than the above bounds as the 
terms must ultimately begin to decrease,as the following example shows. Consider 
P1000)- 

5. We have 

.369652 X 1030 .369652 X 1030 

.617024 X 1030 -.247372 X 1030 

.480117 X 1030 .232745 X 1030 

.231361 X 1030 .138390 X 1028 

.773674 X 1029 .787513 X 1029 

.190671 X 1029 .596842 X 1029 

.359008 X 1028 .632743 X 1029 

.528360 X 1027 .627460 X 1029 

.616781 X 1026 .628076 X 1029 
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The underestimate will initially be negative and thus trivial, but if enough terms are 
retained an improved estimate is possible. We have in this case that 

.627460 X 1029 <p50o(000) < .628076 X 1029, 

whereas P50(1000) = .628023 X 1029. If the next two terms are included, we have 

.576293 X 1025 .628019 X 1029 

.433098 X 1024 .628023 X 1029 

On the other hand n cannot in general be too small,as the following argument will 
indicate. The terms of the series begin to decrease in absolute value when 

72 + (- 3)) (m -2r)(+6r-I-19 3/2 ji2 n + m(m4 ) > ( m + 5 

The r.h.s is monotonically decreasing for r = 1,2,3,. Thus we need to determine 
the smallest r such that 

72 + m(m- 3) (m -2r)m3/2 (1 + 6r + 19 3/2 4 
~~~~k 50mJ 

Now the maximum value of 1 + (6r + 19)/50m = 1 + (6m + 19)/50m. Thus 

Max (l+ 6r + 19 3/2 < (1 5)3/2 
r50m 

Thus if we consider the simpler relationship 

(m -2r) r2 (n + m(m 3)) 3 X (say), 

we have that 

(X + 4m) ? (X + 4m) -16m 
r = 8 

m2 16m2 
.. r . 2 as - 2 1, 

X2+ 4m (x2 + 4m)2 

.. r . - 3) 2 wherer 1,2,3,4. 

72(n + m(-3)+ 4m 4 
(4 ) 

Now p(m) pm(2m), and thus we have in this case that 

m5 2m 
r- 

72(2m + m(m _ 3) )2 + 4M4 17 
4 

Thus r - o with m, and the series is thus of no value for calculating p (m). 
One final example using the above approximation for r. 

6. Consider P50(500). We have that r . 2.8. Thus the third term in the series is 
approximately the largest in absolute magnitude. In fact,the largest is the fourth,as 
the following results show. 
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.329499 X 1022 .329499 X 1022 

.117201 X 1021 -.842513 X 1022 

.194333 X 1021 .110081 X 1021 

.199553 X 1021 -.894714 X 1022 

.142198 X 1023 .527271 X 1022 

.746776 X 1022 -.219505 X 1022 

.299625 X 1022 .801205 X 1021 

.939667 X 1021 -.138462 X 1021 

.233746 X 1021 .952837 X 1020 

.465398 X 1020 .487439 X 1020 

.745310 X 10'9 .561970 X 1020 

Thus .487 X 1020 < P50(500) < .562 X 1020, whereas P50(500) = .553301 X 1020. 

7. Conclusion. The alternating series expansion for q,(n) provides an effective 
means for determining both upper and lower bounds when n > m5/2/ 17i2. 
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